
Evidence-Driven Differential Diagnosis
of Malignant Melanoma

Naren Akash R J, Anirudh Kaushik, and Jayanthi Sivaswamy

Center for Visual Information Technology
International Institute of Information Technology Hyderabad, India

https://cvit.iiit.ac.in/mip/projects/meldd

Abstract. We present a modular and multi-level framework for the dif-
ferential diagnosis of malignant melanoma. Our framework integrates
contextual information and evidence at the lesion, patient, and popu-
lation levels, enabling decision-making at each level. We introduce an
anatomic-site aware masked transformer, which effectively models the
patient context by considering all lesions in a patient, which can be vari-
able in count, and their site of incidence. Additionally, we incorporate pa-
tient metadata via learnable demographics embeddings to capture popu-
lation statistics. Through extensive experiments, we explore the influence
of specific information on the decision-making process and examine the
tradeoff in metrics when considering different types of information. Val-
idation results using the SIIM-ISIC 2020 dataset indicate including the
lesion context with location and metadata improves specificity by 17.15%
and 7.14%, respectively, while enhancing balanced accuracy. The code is
available at https://github.com/narenakash/meldd.

Keywords: Melanoma Diagnosis · Differential Recognition · Ugly Duck-
ling Context · Patient Demographics · Evidence-Based Medicine.

1 Introduction

Melanoma is the most invasive form of skin cancer with the highest mortality
rate; its incidence is rising faster among other types of cancer and is projected to
increase by 57% globally by 2040, leading to an estimated 68% rise in mortality
[1]. When caught early, it has an increased survival rate and tends to have a
better prognosis. However, melanoma is a complex and heterogeneous disease
which makes accurate early recognition non-trivial and challenging. Melanoma
can masquerade/appear as benign lesions and benign pigmented lesions can re-
semble melanoma, making diagnosis difficult even for skilled dermatologists [2].

A dermatologist’s expertise to discriminate between benign moles/nevi and
melanoma relies on the recognition of morphological features through the ABCD
criteria [3], applying the 7-point checklist [4], overall pattern recognition and dif-
ferential recognition of the ugly duckling nevi [5]. Most nevi in a patient tend
to be similar and can be grouped into a few clusters based on morphological
similarity [6]. Any nevus that deviates from a consistent pattern within an in-
dividual is an outlier or an ugly duckling which is taken to be a suspicious
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lesion [7]. Dermatologists utilize an intra-patient lesion-focused as well as com-
parative analysis, recognising overall patterns to identify ugly ducklings before
forming a provisional diagnosis [8]. This approach considers the characteristics
of individual lesions while also taking into account the context of the patient’s
overall nevi distribution, leading to improved accuracy in identifying melanoma
[9]. Furthermore, patient demographics, including age, sex, and anatomical site,
are risk factors to consider in the differential diagnosis of melanoma [10]. Age-
related susceptibility, anatomical site variations, and sex-specific characteristics
contribute to the complexity of melanoma diagnosis.

Recent advances in deep learning techniques have led to an interest in the de-
velopment of AI models for dermatology. The integration of AI systems into clin-
ical workflows has the potential to improve the speed and accuracy of melanoma
diagnosis, saving lives. Existing deep learning methods have reported good di-
agnostic accuracy in the classification of skin lesions. These use largely lesion-
focused approaches and include the seven-point checklist [11], hierarchical struc-
tures [12], lesion segmentation [13], and ABCD-based medical representations
[14]. Despite integrating clinical knowledge, most existing methods have not
fully harnessed the potential of the clinician’s comprehensive diagnostic process
and strategy. While some approaches, such as CI-Net [15], incorporate zoom-
observe-compare processes, they focus only on individual lesion characteristics.
The UDTR framework [16] incorporates contextual information of lesions to
model ugly ducklings but assumes a fixed number of contextual lesions. No at-
tempt has been made by any approach so far to take into account a richer set of
information that clinicians rely on for melanoma diagnosis [17]. These include
lesion counts in a patient, which can be variable, lesion location in the body
and patient demographic information. Further, existing models are essentially a
black box, with no or limited explainability that too post facto on the basis of
visualisation of activations and so on.

We wish to design a melanoma recognition solution that incorporates a rich
set of information similar to the clinical practice. Our aim is to understand how
the addition of specific information influences the decision-making process. An
understanding of the sensitivity-specificity tradeoff when considering different
types of information can make a method more transparent. This transparency
can enable clinicians to critically evaluate the AI system’s recommendations
and ensure that decisions align with their clinical expertise and patient-specific
circumstances. In this paper, we present a method for melanoma recognition
with the following contributions:

– A modular, multi-level framework for evidence-based differential diagnosis of
melanoma. This offers a solution to holistically integrate evidence at multiple
levels (lesion, patient and population).

– A solution based on a masked transformer to utilize variable-count context
lesions from a patient along with their anatomic location and metadata such
as age and sex.

– Insights on the role of various information in melanoma recognition, based on
validation results of the proposed approach on the 2020 SIIM-ISIC dataset.
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Fig. 1. The dermatologists’ melanoma diagnostic reasoning process (left) and the
pipeline of the proposed MelDD framework (right) inspired by the clinical process.
Lesion features are extracted and grouped by patients first, and lesion anatomical site
information and patient metadata are incorporated later for enhanced context.

2 Method

In our design, features are first extracted for each given lesion image (using a
CNN) and are grouped patient-wise. The context of lesions within each patient
is captured using a transformer encoder with masked self-attention. Age, sex,
and anatomical site embeddings are included as supporting evidence, which along
with lesion context, are fed into the classification layers to predict melanoma.

Modelling the Context of Patient’s Skin Ecosystem: As per the ugly
duckling criteria, in a patient, nevi which stand out from the rest are suspicious
regardless of morphology. Conversely, lesions which are considered atypical in
the absence of patient context may turn out to be normal within the context of
a patient. Hence, contextual information is critical. Transformers have demon-
strated a remarkable ability to analyze the global context in text, images and
videos [19]. Stacked self-attention layers to model dense relations among input
tokens allow transformers to capture context information at a patient level. This
modelling is used in our design to capture ugly ducklings, if any. We denote
the set of extracted (from a CNN) lesion features for a given patient p by the

set Lp = {lpi }
Np

i=1, where each lpi ∈ Lp is obtained by passing the set Xp of le-
sions from the same patient through a ResNet101 finetuned on SIIM-ISIC 2020
dataset. The dimensionality of each lesion feature is projected onto the dimen-
sion D of the transformer. Since the number of lesions per patient is variable,
we employ masked self-attention with key padding [19] that applies padding to
patients with fewer lesions to align them with Np

max, the maximum number of le-
sions for any patient in the dataset and ignores padding tokens during processing.

Anatomical Site and Masked Self Attention: Different regions of the body
exhibit varying levels of melanoma risk. Hence, the anatomical locations of a
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lesion can help in ruling out benign lesions. Self-attention [19] generates an at-
tention map of the context utilizing all of the patient’s lesions. We use this
attention map to implicitly infer the presence of an ugly duckling. To further
enhance contextual analysis, we introduce a learnable anatomic site matrix, de-
noted as EL ∈ RD×7, which represents the general anatomic sites in our dataset:
head/neck, palm/soles, oral/genital, lower extremity, upper extremity, torso, and

an additional category for unknown locations. Let Ap = {api }
Np

i=1 ∈ RD×Np be
the anatomic site representation for patient p, obtained by retrieving the corre-
sponding anatomic site embedding for each lesion from EL.The lesion embedding
Lp is added to the anatomic site embedding Ap, element-wise, to derive an en-
hanced contextual embedding Qp ∈ RD×Np : Qp = Lp + Ap. Embedding Qp is
utilized in masked self-attention, generating an attention map that captures spa-
tial, inter-lesion interactions within the context of a patient. This integration
enables the model to effectively learn the relationship between the anatomical
context and individual lesion characteristics at the patient level.

Combining Patient Demographics for Differentials: Age and sex are
risk factors for melanoma, as women have a higher incidence of diagnosis before
the age of 50, while men have a higher rate after the age of 50. The incidence
of melanoma increases progressively with advancing age, indicating a greater
prevalence of melanoma development among individuals as they age [20]. Pa-
tients’ sex and age information is generally part of the metadata. A learnable
embedding ES ∈ RD×2 is used to represent the male and female sexes. The
transformer’s trainable embeddings effectively capture and encode the dataset
statistics. Positional encodings, incorporating sine and cosine functions, are em-
ployed to denote the patient’s age through integer binning. The age, sex, and
lesions are represented by learning three type embedding vectors, forming the
trainable embedding matrix EM ∈ RD×3, to distinguish one piece of information
from another. These distinct type embedding vectors are then added element-
wise to the corresponding age, sex, and contextual lesion embeddings, denoted
as Sp, Yp, and Qp. The modified embeddings are then concatenated, capturing
the combined information of age, sex, and lesions as input to subsequent stages.

Transformer Encoder for Melanoma Recognition: A multi-layer trans-
former encoder [19] is composed of a stack of encoder layers, each comprising
multi-head self-attention, layer normalization (LN) and feed-forward neural net-
works (FFN). In the proposed framework, the combined patient representation
Ep = [Sp;Yp;Qp] undergoes encoding using a multi-layer transformer encoder.
Given input patient representation Ep

l−1 at the lth layer,

Encoder(Ep
l−1) = Ep

l = FFN(LN(Attention(Ep
l−1))) + Ep

l−1,

Attention = Softmax

(
EpQ

l−1.E
pK
l−1√

D

)
EpV

l−1.

The contextualized representation of the lesions Ep
L is sent to shared linear layers

to perform melanoma recognition.
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3 Experiments

3.1 Data

The 2020 SIIM-ISIC melanoma recognition dataset [21] was used for all our
experiments. It includes 2,056 patients, among whom 428 individuals exhibit
at least one melanoma, with an average of 1.36 melanomas per patient. The
dataset comprises 33,126 dermoscopic images, including 584 histopathologically
confirmed melanomas, as well as benign lesions that are considered melanoma
mimickers such as nevi, atypical melanocytic proliferation, café-au-lait macule,
lentigo NOS, lentigo simplex, solar lentigo, lichenoid keratosis, and seborrheic
keratosis. Hence, the dataset is severely imbalanced, with melanomas accounting
for only 1.8% of the samples. In addition to the image data, the dataset provides
metadata pertaining to the approximate age of patients at the time of capture,
their biological sex, and the general anatomical site of the lesion.

3.2 Experimental Settings

The dermoscopic skin lesion images were cropped to the maximum square from
the centre and resized to 256 × 256. Our experimental setup involved a pa-
tient group stratified five-fold cross-validation without age and sex stratification.
Each fold included a designated testing set, while the remaining data was split
into 80% for training and 20% for validation. The evaluation on the challenge
leaderboard is not conducted due to the unavailability of ground truth for the
challenge test set, preventing analysis on our evaluation metrics. The ResNet101
[22] backbone pre-trained on SIIM-ISIC 2020 dataset to predict lesion-focused
recognition was employed for transformer feature extraction. The transformer
consisted of 4 layers with 4 MHSA heads, and the model dimension was set to
D = 64. The training process utilized the Adam optimizer [23] with a learning
rate of 8e−5, implemented in PyTorch [24]. It employed the weighted binary
cross-entropy loss, based on the inverse of proportions, and was conducted on a
single NVIDIA GeForce RTX-2080 Ti GPU. The training, incorporating early
stopping, was limited to a maximum of 200 epochs with a batch size of 32.

Metrics: Many state-of-the-art models for SIIM-ISIC 2020 classification focus
on optimizing the area under the ROC curve (AUC). However, this may be
inappropriate since AUC is not clinically interpretable [25]. For instance, a re-
cent work [15] reports a high AUC score but exhibits poor sensitivity, making
it unsuitable for clinical use in melanoma recognition. Additionally, different
methods can possess identical AUC values yet perform differently at clinically
significant thresholds. To address these limitations, we opt to optimize the bal-
anced accuracy (BACC) at the Youden’s J index [26]. This may be more clinically
meaningful for a small and imbalanced dataset with low melanoma prevalence
(1.8%) such as SIIM-ISIC 2020 dataset. The operating point determines the cut-
off value that minimizes the difference between sensitivity and specificity, better
evaluating the clinical utility of diagnostic tests in melanoma recognition.
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Table 1. Comparision of classification performance in melanoma recognition averaged
across five-folds on SIIM-ISIC 2020 dataset: BACC: balanced accuracy, SN: sensitivity,
SP: specificity at Youden’s J statistic cut-off, and ROC AUC. (PC = patient context,
VC = varying lesion count, L = anatomical location, M = metadata).

MelDD variants PC VC L M BACC SN SP AUC

V0 (Baseline) ✗ – ✗ ✗ 0.7649 0.8867 0.6431 0.8371
V1 ✓ ✓ ✗ ✗ 0.7841 0.8679 0.7003 0.8558
V2 ✓ ✓ ✓ ✗ 0.7904 0.8274 0.7534 0.8612
V3 ✓ ✓ ✗ ✓ 0.7867 0.8843 0.6890 0.8544
V4 ✓ ✓ ✓ ✓ 0.7793 0.8761 0.6825 0.8504

CI-Net [15] ✗ – ✗ ✗ 0.6200 0.3220 0.9180 0.9230
UDTR-L [16] ✓ ✗ ✗ ✗ 0.7564 0.7522 0.7605 0.8493
UDTR-Adapted ✓ ✗ ✗ ✗ 0.7094 0.7922 0.6266 0.7634
UDTR-Full [16] ✓ ✗ ✗ ✗ 0.8183 0.8164 0.8202 0.8964

Table 2. Performance improvement of the variants over the baseline (in percentage).

MelDD variants PC VC L M BACC SN SP AUC

V0 ✗ – ✗ ✗ 0.7649 0.8867 0.6431 0.8371
V1 ✓ ✓ ✗ ✗ +2.51% −2.12% +8.89% +2.23%
V2 ✓ ✓ ✓ ✗ +3.33% −6.69% +17.15%+2.88%
V3 ✓ ✓ ✗ ✓ +2.85% −0.27% +7.14% +2.07%
V4 ✓ ✓ ✓ ✓ +1.88% −1.20% +6.13% +1.59%

4 Results and Discussion

We assess the contributions of the additional information in melanoma recog-
nition using variants of our proposed MelDD framework. These results are pre-
sented in Table 1. Variant V0 (baseline) which solely considers the lesion has a
BACC of 76.49% and AUC of 83.71. This, however, is at a low specificity (SP) of
64.31%. Overall, from the figures in Table 1 and 2, it can be seen that the addi-
tion of information is beneficial as there is a consistent boost in all performance
metrics except SN, relative to the baseline. This boost ranges from a modest 1.9%
(in BACC for V4) to a significant 17.15% (in SP for V2). The degradation in SN
ranges from 0.27% (for V3) to 6.7% (for V2). Including all (lesion, its context,
location and metadata) information serves to boost the performance (of V4) by
a minimum of 1.6% (AUC) and a maximum of 6% (SP) with a decrease in SN
by less than 2%. Figure 2 illustrates patient case studies, demonstrating the im-
pact of incorporating additional context and metadata on melanoma recognition.

The obtained results provide sufficient insights that can help in deciding
which information is preferable for a specific use case. For instance, the combined
knowledge of lesion source (which patient), its characteristics vis a vis other
lesions of the patient (to help identify the ugly duckling) and where in the body
it is located appears to be best for melanoma diagnosis with an optimal detection
threshold, as seen in the figures for MelDD-V2. While balancing both SN and
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Fig. 2. Examples of malignant melanoma prediction changes with additional context
and evidence information. Green/red boxes indicate correct/incorrect predictions, re-
spectively. In Patient A, multiple atypical lesions reduce suspicion of malignancy in an
additional atypical lesion, while a morphologically typical lesion distinct in the nevus
landscape is considered suspicious. Patient B demonstrates how including anatomical
location accurately detects an ugly duckling suspicious lesion by comparing it to other
lesions in the same location to predict malignancy effectively. The examples of Patients
C and D underscore how incorporating location information prevents the misclassifi-
cation of benign lesions as malignant by considering the specific anatomical charac-
teristics that differentiate suspicious lesions in different locations. Lastly, Patients E
and F emphasize the importance of patient demographics to help the model correlate
lesion characteristics with susceptibility to risk factors, avoiding misdiagnosis of benign
lesions as malignant based on a better understanding of patient-specific factors.
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SP is crucial to ensure effective and reliable melanoma diagnosis, their relative
importance varies based on priorities. A high SP value will be required to avoid
overdiagnosis and needless biopsies. MelDD-V2 is a good choice to meet this
requirement. If on the other hand, the application scenario is screening, a higher
SN is preferable, and hence, simply using metadata instead of lesion location
may be preferable as MelDD-V3 has a high SN and a marginally lower BACC
and AUC. This suggests that patient sex and age do play a key role in improving
SN. Intuitively, combining all information should be beneficial to performance
which is not seen in the result in Table 1. When we examined the reason for this,
we found that there was a sex-wise skew in the melanoma cases in the dataset.
A sex-wise stratification in the data split for training/testing could be explored
in the future to mitigate the effect of skew.

Finally, we compare the proposed method with the state-of-the-art (SOTA)
frameworks, CI-Net [15], and UDTR [16]. There are some differences in the set-
tings which may impact the comparison. For a start, the SOTA models utilize
higher-resolution images compared to our work. UDTR is designed for a fixed
number of lesions; it handles deviation in input through repeated sampling and
uses contrastive learning and test-time augmentation techniques. However, re-
peated sampling in a transformer-based model can lead to overfitting, limited
generalization, potential information loss, and difficulties in capturing complete
patient context due to random selection and discarding of lesion instances. To
ensure fairness, we introduce UDTR-Adapted as a baseline that aligns with our
MedDD-V1 while considering a fixed number of lesions. Notably, MelDD-V1 out-
performs (in terms of BACC) UTDR-L by 3.66% and UDTR-Adapted by 10.53%
(see the lower part of Table 1). This highlights the significance of considering
the complete patient context.

5 Conclusion

Inspired by the clinical diagnostic reasoning process where multiple sources of
information are used for diagnosis, we present a modular, multi-level framework
for differential diagnosis of malignant melanoma that integrates information at
lesion, patient, and population levels. Since the number of lesions a patient may
have is unknown, the proposed solution employs a masked transformer to seam-
lessly incorporate variable lesion counts, enabling flexible integration of patient
context information in the decision-making process. Results show the differen-
tial roles played by additional information: the context and location information
leads to a significant improvement in SP values with a marginal dip in SN,
whereas metadata serves to restore SN value to that of the baseline model with
a modest increase in SP value. Our results demonstrate that optimising BACC
at Youden’s J index aids in gaining good control over SP and SN variations. This
is in contrast to the conventional approach of optimising AUC, which typically
leads to a big tradeoff between SP and SN. Our solution offers a transpar-
ent decision support system for melanoma recognition, supporting clinicians in
evidence-based decision-making.
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