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Abstract. Designing deep learning (DL) models that adapt to new data
without forgetting previously acquired knowledge is important in the
medical field where data is generated daily, posing a challenge for model
adaptation and knowledge retention. Continual learning (CL) enables
models to learn continuously without forgetting, typically on a sequence
of domains with known domain identities (e.g. source of data). In this
work, we address a more challenging and practical CL scenario where
information about the domain identity during training and inference is
unavailable. We propose Continual-GEN, a novel forget-free, replay-free,
and domain-agnostic subnetwork-based CL method for medical imaging
with a focus on skin lesion classification. Continual-GEN proposes an en-
semble of groups approach that decomposes the training data for each
domain into groups of semantically similar clusters. Given two domains,
Continual-GEN assesses the similarity between them based on the dis-
tance between their ensembles and assigns a separate subnetwork if the
similarity score is low, otherwise updating the same subnetwork to learn
both domains. At inference, Continual-GEN selects the best subnetwork
using a distance-based metric for each test data, which is directly used for
classification. Our quantitative experiments on four skin lesion datasets
demonstrate the superiority of Continual-GEN over state-of-the-art CL
methods, highlighting its potential for practical applications in medical
imaging. Our code: https://github.com/nourhanb/Continual-GEN.

Keywords: Continual Learning · Domain-agnostic · Out-of-Distribution
Detection · Skin Lesion Classification · Dermatology.

1 Introduction

Deep learning (DL) models have emerged as powerful tools, surpassing human
experts in certain cases, particularly in skin lesion classification [7]. However,
the conventional clinical practice of training DL models only once falls short of
addressing the steady stream of medical data, where data is generated daily and
often exhibits a domain shift arising from various factors such as diverse clinical
practices, variations in clinical devices or diagnostic workflows, or differences
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in data populations [23,8]. Thus, there is a pressing need to design DL models
that can effectively learn a stream of heterogeneous data and adeptly adapt to
the substantial domain shift encountered across the different straining domains.
The straightforward approach of fine-tuning DL models with either new lesions
or heterogeneous data, without access to the initial training data, easily leads to
overwriting of previously learned knowledge, resulting in catastrophic forgetting.

Continual learning (CL) [22] aims to enable DL models to adapt to chang-
ing environments and learn from new data while retaining previous knowledge.
Replay-based methods [18,17] store a subset of data samples and replay them
periodically to retain past domain information. However, these methods face
challenges in medical domains due to data privacy policies that restrict unreg-
ulated data storage and transfer [24]. Regularization-based methods [16,2] im-
pose restrictions on parameter updates to preserve prior knowledge while learn-
ing new domains. However, with the complex and heterogeneous medical data,
the performance of these methods is significantly limited. Architecture-based
methods [9] assign specialized architectural components for each domain, but
encounter increased memory usage as new domains emerge. A promising recent
approach has been developed that utilizes different subnetworks within a fixed-
size dense network to learn the different domains [3,15,6]. Taking advantage
of the over-parameterization of DL models, this subnetwork-based approach ef-
fectively addresses memory usage limitations in architecture-based methods by
pruning unimportant weights, leading to optimized memory footprint and com-
parable or superior performance. However, existing CL methods face a crucial
limitation in their practical deployment in dynamic real-world environments,
particularly healthcare, due to the assumption of known data domain identi-
ties, such as the source of data or the specific device used for data generation.
In practice, the anonymization process may erase domain identity information,
making it infeasible to rely on such information during training or inference.
As a consequence, current CL methods often underperform when evaluated in a
domain-agnostic setup [19].

In this work, we introduce Continual-GEN, the first subnetwork-based CL
approach for skin lesion classification that is not only forget-free and replay-free,
but also domain-agnostic during training and inference. Specifically, we intro-
duce a continual OOD detection method that is triggered when a domain shift
occurs, allowing us to initialize a new subnetwork for learning the new domain
during training. Our approach involves decomposing the semantic space for each
training domain into distinct clusters with similar semantics, enabling the detec-
tion of new domains based on their distance to the clusters of previous domains.
However, selecting an optimal number of clusters is challenging due to the com-
plex heterogeneity of skin data. To this end, we introduce the novel ensemble of
groups technique, which partitions the features into different groups, each with
a different number of clusters. This approach enhances OOD detection relia-
bility without the need for determining an optimal number of clusters. During
inference, Continual-GEN utilizes a distance-based metric to select the most ap-
propriate subnetwork for each test data, which is directly used for classification.
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Fig. 1. Continual-GEN decomposes data into ensemble of M groups in the fea-
ture space, where the m-th group contains km clusters. To identify the similar-
ity between two domains Dt+1 and Dt, an ensemble similarity score ESS is cal-
culated from the ensemble of all the minimum distances of each pair of groups,

{(Gm′,km′
t+1 ,Gm,km

t )}Mm′,m=1. A large ESS score indicates higher similarity between
the two domains, i.e., Dt+1 is IND with respect to Dt and ft is updated with Dt+1.
Else, Dt+1 is OOD and a new subnetwork ft+1 is initialized to learn Dt+1.

Experimental results on four diverse skin image datasets provide strong evidence
supporting the superiority of our method compared to others.

2 Continual-GEN

Preliminaries. We propose a CL framework where a network f , of a fixed
size, learns T domains D = {D1, . . . , Dt, . . . , DT } sequentially over time while

retaining previously acquired knowledge. The t-th domain Dt =
{(

xi
t, y

i
t

)}Nt

i=1
contains Nt tuples of input samples xt

i ∈ X and their corresponding labels yti ∈
C. When encountering the t-th domain with unknown identity, the data from
previous domains {Di}t−1

i=1 is either unavailable or restricted. Our objective is to
identify an optimal domain-specific subnetwork ft for Dt, which is only updated
when encountering a new, in-distribution (IND) domain. Else, ft remains frozen
and a new subnetwork is created to learn the OOD domain. The network f
should be deployable at any time and capable of extracting predictions using
the best subnetwork without knowledge of the test image’s specific identity.
Domain-specific Subnetwork Formation. After training f on a specific do-
main Dt, we utilize a culpability-based pruning technique [3] to identify the
optimal subnetwork ft. This technique involves pruning units with high cul-
pability scores, effectively removing them as they are considered unimportant.
Through this process, we ensure that the subnetwork ft maintains performance
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comparable to the full network, while simultaneously creating room, i.e., preserv-
ing capacity, within the network f to effectively learn knowledge encountered in
future domains. The pruning is performed based on a predefined pruning per-
centage p, which is set by the user.
Create a New or Update an Existing Subnetwork. When presented with
a new batch of data, Dt+1, Continual-GEN assesses the similarity between Dt+1

and each previously encountered domain {Di}ti=1. This assessment, which in-
cludes three steps (I-III, below), determines whether the new data is IND with
respect to any previous domain or OOD. In the case of IND, Continual-GEN
reuses and updates the corresponding subnetwork, while for OOD, it creates a
new subnetwork specifically for Dt+1. For notational simplicity, we illustrate the
process using only the most recent domain, Dt.
I. Ensemble of Groups. Upon selecting the optimal subnetwork ft for Dt,
we extract the embedding features of Dt in the embedding space, denoted as
Zt = {z1, z2, ..., zN}. After that, as illustrated in Fig. 1, we partition Zt into an
ensemble of M groups, each with a different number of clusters, i.e.,

GEnsemble
t = [G1,k1

t , . . . ,Gm,km

t , . . . ,GM,kM

t ]

where Gm,km

t is the m-th group with km clusters. The mean and covariance
of each cluster within each group in the ensemble are computed and stored,
occupying only a few KBytes of memory.
II. ESS Score. To quantify the similarity between Dt and a new domain Dt+1,
we form GEnsemble

t+1 , which mirrors the configurations in GEnsemble
t , by perform-

ing a forward pass of Dt+1 through the trained subnetwork ft. Then, we measure
the Mahalanobis distance between each cluster in a group in GEnsemble

t+1 to all the
clusters in the mirroring group in GEnsemble

t . Then, for each pair of group config-

urations, e.g., (G
m′,km′
t+1 , Gm,km

t ), we return the smallest Mahalanobis distance,
Sm′,m, representing the similarity score between the m′-th group in GEnsemble

t+1

and the m-th group in GEnsemble
t . As demonstrated in Fig. 1 (right), the total

2 × M individual scores are then aggregated using an ensemble module, such
as averaging in our implementation, yielding the final ensemble similarity score
ESS as follows;

ESS = ensemble{Sm′,m} for m′,m ∈ {1, 2, ...M}.

III. IND vs OOD Decision Making. If ESS exceeds a threshold value γDt
,

indicating a higher degree of similarity between the two domains, ft is updated
with Dt+1 and the mean and covariance values are recalculated and updated in
memory. On the other hand, if ESS falls below γDt , suggesting that Dt+1 is
OOD, a new subnetwork is initialized to learn Dt+1 using the same culpability-
based pruning technique. The mean and variance of all clusters and groups in
GEnsemble

t+1 are calculated from the trained ft+1 and stored for future use. If ESS
returns IND to multiple domains, we only fine-tune the subnetwork with the cor-
responding smallest ESS value. We refer the reader to Algorithm-1 in supple-
mentary material for a summary of the training framework of Continual-GEN.
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Domain-agnostic Inference. For a test image, a forward pass through all
subnetworks is performed to calculate ESS with each domain. The subnetwork
with the smallest score is selected and directly used to extract a prediction.

3 Experiments and Results

Datasets and Implementation Details. In our experimental setup, we con-
sider a total of six sequentially presented domains that are constructed using
four distinct skin lesion datasets: HAM10000 (HAM)[21] (partitioned into three
domains as in [8]), Dermofit (DMF) [1], Derm7pt (D7P) [11], and MSK [10]. We
use ResNet-152 as the backbone of network f . For each domain, we train it using
the cross-entropy (CE) loss for 150 epochs with a constant learning rate of 1e-5
and a batch size of 16. We partition each domain into three sets: training (60%),
validation (20%), and test (20%) sets. We balance all the training domains in
PyTorch, and we resize the images to 224×224. To address domain order bias,
we averaged the results across all 720 possible domain order combinations. We
use p=80% pruning ratio when creating all the subnetworks. Each ensemble con-
sists of M= 8 groups, including one group formed using the Ground Truth (GT)
clustering, which cluster features based on the known class labels, i.e., k = GT ,
and seven additional groups created by the Gaussian mixture model (GMM)
clustering method, which models the features as a mixture of k Gaussian distri-
butions in the embedding space (k =1, 3, 5, 7, 10, 15, and 20). We use averaging
for the ensemble, and set γDt

at twice the mean of all clusters in GEnsemble
t .

Metrics. We evaluate the performance of our Continual-GEN using two met-
rics: 1) the widely-used accuracy of each domain after training all the domains:

ACC = 1
T

∑T
t=1 aT,t, where aT,t is the test balanced accuracy of t-th domain af-

ter a model has learned all the T domains, and 2) the average accuracy computed

over all domains, AV G = 1
T

∑T
t=1 ACC(t).

Comparison Against SOTA CL Methods. We compare Continual-GEN

against several CL methods, including three subnetwork-based methods: CPN [3],
PackNet [15] and CP&S [6], and two regularization-based methods: EWC [13]
and LwF [14]. All the competitors require the availability of domain identity
information, as they were not specifically designed for domain-agnostic scenar-
ios. Additionally, we provide an upper bound performance (JOINT), which is
obtained by the usual supervised fine-tuning on the data of all tasks jointly
(assuming all available at one time), and a lower bound performance (SeqT),
which simply performs sequential training without any countermeasure to for-
getting. Our comprehensive evaluation, as summarized in Table 1, demonstrates
the performance of Continual-GEN, surpassing other CL approaches across all
domains. This superiority can be attributed to two key factors. Firstly, we ad-
dress the potential issue of negative knowledge interference by identifying one
HAM domain as OOD and assigning a separate subnetwork for it (the total
number of subnetworks in f is 5 in Continual-GEN as opposed to 4 in alterna-
tive methods). Secondly, we use a culpability-based pruning technique to retain
only the most relevant units for each domain, resulting in improved classifica-
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Table 1. Performance of Continual-GEN against baselines and SOTA CL methods on
six skin lesion domains. ‘# of sub’ indicates the total number of subnetworks in f .

Method
Test Sets Performance (ACC) % Total # of

HAM-1 HAM-2 HAM-3 DMF D7P MSK AVG % sub

Baselines

JOINT 90.72±0.81 91.43±0.43 89.65±0.15 84.07±0.72 88.65±0.06 84.21±0.99 88.12±0.52 -
SeqT 40.38±0.28 42.06±0.27 41.84±0.51 44.97±0.08 44.52±0.65 40.78±0.94 42.43±0.45 -

Competing CL Methods

CPN 84.36±0.50 83.37±0.12 82.63±0.78 76.54±0.40 80.46±0.57 70.11±0.63 79.58±0.50 4
PackNet 81.04±0.35 80.61±0.29 79.39±0.81 70.05±1.02 77.59±0.46 64.83±0.59 75.59±0.42 4
CP&S 80.47±0.68 79.51±0.53 78.84±0.16 71.18±0.31 78.55±0.42 69.91±0.70 76.41±0.47 4
EWC 44.15±0.91 44.98±0.50 43.25±0.83 56.34±0.65 46.08±0.13 43.12±1.12 46.32±0.69 -
LwF 53.28±0.84 54.22±0.30 53.01±0.90 59.62±0.33 47.50±0.46 45.14±1.19 52.13±0.67 -

Proposed Method

Ours 85.78±0.20 84.11±0.84 85.41±0.71 77.52±0.98 81.73±0.30 71.84±0.13 81.07±0.50 5

Table 2. Continual-GEN average performance with different OOD detection methods.
‘# of sub’ indicates the total number of subnetworks in f .

Method
Continual-GEN

Ours Method−A Method−B Method−C
Total AVG % 81.07±0.50 76.51±0.38 72.34±0.18 73.54±0.62

# of sub 5 3 2 6⋆

⋆ indicates that the pruning ratio was increased to 85% to accommodate more subnetworks.

tion performance, even with the subnetworks in Continual-GEN having fewer
parameters than those of other methods.

Comparison Against other Domain-agnostic Methods. To assess the ef-
fectiveness of the proposed OOD detection method in Continual-GEN, i.e., en-
semble of groups, we compare it against alternative domain-agnostic learning
techniques. In Method−A, a new subnetwork is initialized when the accuracy
on new domain drops below 10%. In Method−B, the Gram distance [17] is
used instead of the Mahalanobis distance for both training and inference. In
Method−C, domain shifts are detected by computing the Mahalanobis distance
between features extracted after the first layer of Batch Normalization (BN) [9].
As demonstrated in Table 2, our proposed method outperforms the alternative
approaches. The Gram distance (Method−B) fails to accurately detect distribu-
tion shifts in skin datasets, and Methods−A, C are sensitive to hyperparameter
choices, such as the 10% accuracy drop threshold in Method−A and the selection
of the BN layer in Method−C.
Unraveling Cluster Quality for Skin Datasets. The quality of clusters in
the embedding space is a fundamental aspect to the success of our method.
Therefore, we conduct an extensive analysis to compare the quality of clusters
generated by different clustering techniques and training methods, as follows:

Clustering Techniques: In addition to the GT and GMM clustering methods, we
explore the use of k-means, which partitions the features into k clusters based
on their similarity measured using the Euclidean distance in the embedding
space. Although we considered other clustering methods, such as agglomerative
clustering and DBSCAN, we found them to be less compatible and requiring
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Fig. 2. Comparison of cluster quality for CE, SupCon, and SimCLR based on GS and
CP on the HAM-1 and DMF domains. The evaluation process begins with the default
GT clusters, followed by k-means or GMM with an increasing number of clusters.

careful hyperparameter tuning, such as selecting appropriate linking strategies
for agglomerative clustering or determining the epsilon value for DBSCAN.

Training Methods: Besides the CE loss, we investigate the influence of contrastive
learning approaches due to their demonstrated capability in OOD detection [20].
Specifically, we compare two approaches: supervised contrastive learning (Sup-
Con) [12] and the unsupervised approach (SimCLR) [5].

Metrics for Cluster Quality: To evaluate the effectiveness of the different clus-
tering and training approaches, we employ two metrics: Global separation (GS)
and cluster purity (CP) [4]. GS quantifies the separability between clusters by
evaluating the intra-cluster distances to the enter-cluster distances of the near-
est neighboring cluster, whereas CP determines how many samples in a cluster
belongs to the same class. Higher values of both metrics indicate higher quality
of clusters. We refer the reader to [4] for equations of GS and CP.

Discussion of Results: By analyzing the results of applying the different clus-
tering and training methods on the HAM-1 and DMF domains, as illustrated
in Fig. 2, we can derive important observations about the quality of the gener-
ated clusters. The following key findings emerge from this analysis: 1) The three
learning methods (CE, SupCon, SimCLR) exhibit comparable performance, with
CE and SupCon showcasing slightly better results due to their supervised learn-
ing nature. 2) The quality of clusters generated by GMM outperforms k-means,
particularly in terms of CP values. The higher purity values achieved by GMM
reflect its capability to generate more internally homogeneous clusters, predom-
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Table 3. Continual-GEN average performance with different ensemble strategies. ‘#
of sub’ indicates the total number of subnetworks in f .

Strategy Average
Top Bottom Trimmed Average

q=20 q=40 q=20 q=40 q=20 q=40

Total AVG % 81.07±0.50 77.43±0.62 79.3±0.48 74.94±0.66 81.07±0.50 81.07±0.50 81.07±0.50

# of sub 5 3 4 6⋆ 5 5 5

⋆ indicates that the pruning ratio was increased to 85% to accommodate more subnetworks.

inantly containing samples from the same class, suggesting its ability to capture
the underlying data distribution of the skin more effectively. 3) The optimal
number of clusters k cannot be easily determined, as the choice of it may not
straightforwardly correspond to higher purity and separation. For instance, CE
with k =5 of GMM on the DMF dataset exhibits lower purity compared to that
of k =10, despite higher values of GS. These results demonstrate the challenge
in selecting the ideal clustering technique and k value for skin-related analysis,
further emphasizing the unique and effective nature of the proposed ensemble of
groups method.
Ablation Study on the Impact of the Ensemble Size. We investigate the
impact of the enemsble size (M) on the performance of Continual-GEN. Our
findings demonstrate that utilizing a substantial number of diverse groups leads
to improved average performance. Specifically, Continual-GEN achieves a per-
formance of 75.34% and 79.34% for M ∈ {1, 2} and M ∈ {3, 4, 5, 6}, respectively.
With M ∈ {8, 9, 10, 11}, the performance further increases to 81.07%.
Ablation Study on the Impact of the ensemble Strategy. We investigate
different ensembling strategies to compute the final ESS score: 1) Average (de-
fault) averages all distance scores, 2) Top averages the top q sorted scores, 3)
Bottom averages the bottom q sorted scores, and 4) Trimmed Average aver-
ages remaining scores after removing top and bottom q sorted scores. Notably,
the Top method identifies more domains as IND, which potentially led to de-
creased performance due to negative knowledge interference between domains,
resulting in a reduction of 3.64% and 1.77% in performance with q= 20 and 40,
respectively, compared to the default method (Average). On the other hand, the
Trimmed Average method performs similarly to the default method, indicating
that it detects the same IND and OOD domains.

4 Conclusion

We introduced Continual-GEN, a subnetwork-based CL approach for skin le-
sion classification. Our method supports sequential learning without forgetting
and does not require domain identity information during training and infer-
ence. Continual-GEN decomposes the semantic space into groups, detecting do-
main shifts and assigning domain-specific subnetworks accordingly. Extensive
experiments on diverse skin lesion datasets demonstrate its superior performance
over SOTA CL methods and domain-agnostic learning techniques. Additionally,
Continual-GEN ensures memory efficiency by avoiding network expansion and
individual sample storage, crucial for maintaining patient privacy.
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