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Abstract. Providing visual cues to justify the decisions of deep neural
networks contributes significantly to increase their explainability. Typi-
cal strategies to provide explanations rely on saliency or attention maps
that may not be easy to interpret. Moreover, the actual decision-making
process is still a black-box. This paper proposes to overcome these limi-
tations using class prototypes, both at the global (image-wide) and local
(patch-based) levels. These associate images with the corresponding pre-
dictions by measuring similarity with learned image/patch descriptors.
Our approach offers both global and local explanations for the decisions
of the model, providing a clearer justification that resembles the human
reasoning process. The proposed approach was applied to the diagnosis
of skin lesions in dermoscopy images, outperforming not only black-box
models, which offer no explanations, but also other state-of-the-art ex-
plainable approaches.
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1 Introduction

In the last years, the landscape of medical image analysis has been transformed,
mainly due to the adoption of deep learning (DL). The field of skin image,
in particular dermoscopy, is a clear example, where recent studies have shown
that DL achieves similar or even superior performance to that of clinicians [6].
While most experiments were conducted in artificial settings, it is undeniable
the collaborative value of AI [18]. Another lesson to be taken from these studies
is that any AI model should incorporate mechanisms to explain its decisions,
increasing its safety and pedagogical value. As matter of fact, the incorporation
of such mechanisms was recently recommended in a set of guidelines [5].

Explainable models can be divided into two main categories [20]: i) those that
are intrinsically interpretable, being possible to understand the decision making
process; and ii) those that resort to additional models to explain their output
(post-hoc methods). Most works in dermoscopy fit in the latter. Methods like
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Fig. 1. The proposed method is able to justify its decisions using both image-level
(global) explanations, obtained by retrieving the most similar training images for the
predicted diagnosis, and patch-level (local) explanations that identify discriminative
regions using heatmaps of similarity to local prototypes from training images.

[18, 7, 10] use saliency maps (e.g., Grad-CAM [15]) to visualize the regions of
the image that contributed to the predictions of DL models. Other methods like
LIME [11] have also been used [16]. While these approaches are quite visual, the
actual decision process still lacks clarity.

Example-based approaches are based on the assessment of past cases to infer
a diagnosis. One of the most popular approaches is content-based image retrieval
(CBIR) [17, 12]. This family of methods use the features of a DL model, usually
trained for classification, to compute image distances, identifying dermoscopy
images that are close in the latent space. However, there is no guarantee that
the latent space is actually capturing lesion similarities. Moreover, the original
classifier still comes short of being explainable. Finally, clinicians also screen the
lesions for local structures that are hallmarks of each class. Adding a region-
based reasoning to a diagnostic system may increase its complexity and often
requires additional domain knowledge, such as annotations to identify clinically
relevant structures [8]. Recent works in computer vision have overcome this issue
using a prototypical part-based architecture called ProtoPNet [2], which is able
to identify relevant region prototypes with minimum supervision. However, this
method has been shown to underperform when compared with non-interpretable
networks. Additionally, the learning process requires setting a trade-off between
different loss terms. This is not trivial and leads to prototypes that lack diversity.

We propose a new model that easily integrates the best characteristics of
CBIR and ProtoPNet, while simultaneously overcoming their limitations. The
proposed approach learns: i) a set of global prototypes for each lesion class, thus
achieving a more interpretable classifier that predicts a diagnosis from similari-
ties; and ii) local prototypes to perform an interpretable part-based classification.
Both the global and local feature spaces can be used to perform CBIR, in order
to identify class specific images or image patches that justify the decision, as
shown in Fig. 1. We conduct extensive experiments to validate our approach us-
ing the ISIC 2019 dataset and various CNN backbones. Our results demonstrate
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Fig. 2. Proposed approach - the method comprises two branches: i) a global branch
that compares an input image with a set of class prototypes; and ii) a local branch,
where regions of the input image are compared with local prototypes.

that the proposed approach achieves competitive performances when compared
to the black-box models and ProtoPNet-based approaches, while providing a
more transparent classification.

2 Proposed Approach

Fig. 2 shows the scheme of our proposal. A CNN backbone is used to extract
a set of feature maps, F . Any CNN backbone can be used, as shown in our
experimental results, where we compare several architectures. The feature maps
are forwarded to the global and local branches. Each branch is responsible for
estimating a probability vector ŷ ∈ RC , where C is the number of lesion classes.
These estimates are obtained by computing a weighted average of the similarity
between the latent vectors of the input image and learned class prototypes. The
final classification is then the class with the highest probability obtained from
averaging the two estimates.

The local branch identifies image patches that are specific of each class, while
the global branch learns image-level representations of those classes. In both
cases, the proposed approach is learning feature representations and simultane-
ously clustering them, ensuring that both local and global CBIR explanations
can be provided.

To train the model, we combine the cross entropy losses for the global and
local branches, Lglobal and Llocal, with a clustering loss, Lcluster, that ensures the
learned prototypes represent centroids of class-specific clusters. The final loss is

L = Lglobal + Llocal + λLcluster , (1)

where λ is a hyperparameter. Each individual loss term is detailed below.

2.1 Clustering

ProtoPNet [2] combines two loss terms to force prototypes to be near patches
from the corresponding class. However, these losses behave poorly when the
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training set is severely imbalanced, as it will repeatedly push prototypes from mi-
nority classes away from the patch-level representations of the dominant classes,
while seldomly pulling them towards the correct patches representations.

As such, we modified the learning process of all prototypes to ensure that
they effectively capture clusters from their respective classes. Specifically, let
pck ∈ RD define the prototype vector, of size D, corresponding to the k-th (global
or local) prototype of class c. We adopt a mini-batch K-Means algorithm [14] to
iteratively update the desired position, f̄ck ∈ RD, of prototypes pck according to

f̄ck ←− (1− 1

nck

)f̄ck +
1

nck

fi , (2)

where fi is the feature vector of sample i assigned to prototype pck , and nck is the
current total number of samples that were assigned to pck . Then, the clustering
loss used to regularize the prototypes is given by

Lcluster =
1

CK

C∑
c=1

K∑
k=1

∥∥f̄ck − pck
∥∥
2

, (3)

where K is the number of prototypes per class. This loss term is applied to each
branch, since each performs a similar tasks but either at a global (image) or
local (patch) level. In the following sections, we will refer to global and local
prototypes as pGck and pLck , respectively.

2.2 Global Prototypes

The global branch aims to learn a set of K prototypes for each class, {pGck}, with
c = 1, . . . , C and k = 1, . . . ,K. These prototypes are used to classify images
based on the similarity of their image-level representations to the prototypes.
To achieve this goal, the feature maps F computed by the CNN backbone are
first combined using a global average pooling (GAP) layer, and then embedded
into a smaller dimension latent space fG ∈ RDG

using two fully connected layers
(see Fig. 2). The latent representation is compared to each prototype using the
cosine similarity, s(pGck , f

G). Then, we compute the probability of class c, ŷGc ,
using a linear classifier with softmax

ŷG
c =

e
∑K

k=1 wck
s(pGck

,fG)∑C
c′=1 e

∑K
k=1

wc′
k
s(pG

c′
k

,fG)
, (4)

where wck is the weight given to the k-th prototype of class c. These weights are
frozen and set to wck = 1

K when training the prototypes and encoding layers,
which means that each class score is given by an average of the similarities to
the corresponding prototypes.

The prototypes are latent variables learned in an end-to-end fashion, together
with the backbone layers. Given a batch of N samples, the global branch loss is

Lglobal = −
N∑
i=1

C∑
c=1

yi,c log(ŷ
G
i,c) , (5)

where yi,c is the one-hot encoding of the ground-truth and ŷGi,c is given by (4).
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2.3 Local Prototypes

The local branch performs a similar analysis to the global branch, but in a
patch-wise way. First, instead of finding a latent representation for the entire
image, the feature maps, F , extracted by the CNN backbone are transformed
into a lower dimensional latent space through two 1× 1 convolutional layers, as
shown in Fig. 2. This results in a new feature maps, FL ∈ RH×W×DL

, where the
j-th pixel contains the latent representation of the corresponding patch in the
input image, denoted by fL

j . Then, we compute the cosine similarity between
the local prototypes, {pLck}, with c = 1, . . . , C and k = 1, . . . ,K, and the latent
representation of each patch, fL

j , j = 1, . . . ,H ×W .
A global max pooling (GMP) is used to obtain a single vector with the

similarity of each local prototype to the image. This vector is then fed to a
linear classifier to obtain the final probabilities of each class c, ŷLc , following a
similar approach to (4). Finally, the classification loss for this branch is given by

Llocal = −
N∑
i=1

C∑
c=1

yi,c log(ŷ
L
i,c) , (6)

where yi,c is the one-hot encoding of the ground-truth and ŷLi,c is the predicted
probability of class c for sample i.

2.4 Pruning and Final Classifier

Once the global and local prototypes have been learned, the final step of the
training procedure is to tune the linear classifier, similarly to the training pro-
cedure described in [2]. For this last part, we freeze all the other parameters in
the model, including the prototypes, and focus on improving the performance of
the classifier by tuning the weight of each prototype. Specifically, the similarity
vectors, given by the global and local branches, are concatenated into a single
vector, s ∈ RT , where T = 2CK is the total number of prototypes. Then, we
build a weight matrix, W ∈ RC×T , such that it initially computes exactly the
same average used during the training of the prototypes – i.e., wc,t =

1
K if the

t-th prototype belongs to class c and wc,t = 0 otherwise. The resulting matrix
is used as initialization of a fully connected layer with no bias, which is then
trained with the cross-entropy loss.

Since some of the learned prototypes may eventually be redundant, we also
prune our model, discarding the less relevant prototypes. To achieve this, we
rely on a binary mask, M , with the same dimensions of matrix W , that discards
a prototype t by putting 0 on the t-th column of matrix M . As such, the class
probabilities are obtained by first computing an element-wise multiplication of
M and W , followed by the matrix product with the joint similarity vector, s.
This prevents the discarded prototypes from contributing to the final prediction,
similarly to a dropout strategy. As for the criteria for discarding prototypes, we
chose a simple approach – if the same training sample was the nearest neighbour
to multiple prototypes, we kept only the closest one.
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2.5 Visual Explanations

The model’s decisions are explained to clinical experts at two levels. On the
global level, the representation fG is used to perform CBIR, by comparing it
with the representations of the training images associated with the closest class
prototype. This process resembles the identification of past similar cases. On
the local level, we show similarity heatmaps highlighting discriminative regions,
along with the patch and image representing the corresponding prototype. Ex-
amples are shown in Fig. 1 and in supplementary material.

3 Experimental Setup

The proposed approach is trained and evaluated using the ISIC 2019 dermoscopy
dataset [19, 3, 4]1, which contains 25,331 images for training and C = 8 classes,
including 3 malignant ones. The dataset was normalized as proposed in [1] and
split into training (80%) and validation (20%).

The proposed approach is assessed in five CNN architectures commonly used
in dermoscopy image analysis: ResNet18, ResNet50, VGG16, DenseNet169, and
EfficientNetB3. For each of these architectures the following models are trained:
i) baseline CNN with an 8-neuron fully connected layer for diagnosis; ii) global
prototypes only; iii) local prototypes only; iv) joint prototypes; v) ProtoPNet [2];
and vi) ProtoTree [9], an improved version of ProtoPNet that assumes an hierar-
chical organization of the prototypes. For each method, we compute the following
evaluation metrics: a) the balanced accuracy (BAcc), which corresponds to the
average recall; b) the average F-1 score; and c) the overall accuracy (Acc).

We optimized the training all models to convey the best results. Regarding
the hyperparameters of our approach, we tested different configurations of: i)
the dimension of the global prototypes DG ∈ {128, 256}; ii) the local prototypes
depth DL ∈ {128, 256}; iii) λ ∈ {10−3, 10−2, 10−1} (from (1)); and iv) whether
to prune the prototypes in the end. We set the initial number of global and local
prototypes per class KG and KL to 10, as used in ProtoPNet. Nevertheless, it is
important to recall that after the pruning stage, the number of prototypes will
be smaller and vary across classes.

All models were trained for a maximum of 100 epochs with early stopping.
We set the batch size to N = 50 and use online data augmentation. Additionally,
we use a curriculum-learning approach to modify the importance of each training
sample [13], in order to deal with the severe class imbalance. The weights of the
CNN backbones are initialized using models pre-trained on ImageNet and fine-
tuned with learning rate of 10−5, while for the fully connected and convolutional
layers in the global and local branches we used 10−3, and 10−2 for the prototypes.
The final classifier were trained for 20 epochs with the same batch size and
a learning rate of 10−2. For ProtoPNet [2] and ProtoTree [9], we adopted the
optimal training procedures described in their corresponding papers. The models
were trained on a NVIDIA Titan Xp using Pytorch2.
1 Under CC BY-NC 4.0
2 https://github.com/cajosantiago/LocalGlobalPrototypes
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Model Approach Acc BAcc F1

V
G

G
16

Baseline 76.2 60.3 63.2
ProtoPNet[2] 73.4 58.9 57.7
ProtoTree[9] 75.9 54.6 58.4

Global 76.7 60.9 63.6
Local 75.6 61.3 62.4
Joint 77.3 62.9 65.1

R
es

N
et

18

Baseline 75.6 63.7 62.8
ProtoPNet[2] 71.7 56.0 53.9
ProtoTree[9] 78.7 58.9 61.9

Global 76.0 63.2 64.2
Local 73.5 61.5 61.0
Joint 75.1 64.8 63.9

R
es

N
et

50

Baseline 76.7 64.4 65.0
ProtoPNet [2] 71.9 49.3 50.5
ProtoTree[9] 81.5 68.3 71.0

Global 78.3 67.6 67.7
Local 77.3 65.9 66.2
Joint 77.7 66.2 67.5

E
ffi

ci
en

tN
et Baseline 82.3 73.1 74.0

ProtoPNet[2] 64.2 46.0 44.1
ProtoTree[9] 84.2 74.1 76.5

Global 79.8 71.2 70.7
Local 78.7 68.7 68.9
Joint 82.8 73.1 74.7

D
en

se
N

et

Baseline 83.1 74.7 75.5
ProtoPNet[2] 75.8 55.2 57.5
ProtoTree[9] 78.6 66.0 66.0

Global 82.7 74.3 74.1
Local 80.9 72.1 71.9
Joint 82.4 75.0 73.4

Table 1. Comparison of CNN back-
bones, without using pruning. Best
results for each backbone in bold.

Prediction: MEL

Local Prototypes

Similar ImagesGT: MEL

Prediction: BCC

Local Prototypes

Similar ImagesGT: BCC

Prediction: NV

Local Prototypes

Similar ImagesGT: MEL

Fig. 3. Examples of predictions and corre-
sponding CBIR explanations: global (top)
and local (bottom).

4 Results

Table 1 shows the best experimental results for each CNN backbone, across all
the evaluated methods (see the Supplementary Material for details on the best
set of hyperparameters). Here we compare the results of our approach using a
classifier without pruning, to make it more similar to the frameworks adopted
in ProtoPNet and ProtoTree. In Table 2 we compare the results of our model
with and without pruning. Fig. 3 shows examples of the proposed approach at
inference time (additional examples can be found in supplementary material).
Global Prototypes vs Baseline: The approach based on global prototypes
alone achieves competitive results across all backbones, outperforming the base-
line into three out of the five architectures. This demonstrates that enforcing
feature similarities between lesions of the same class does not affect the quality
of the final classification. Additionally, it leads to more interpretable decisions
that can be grounded in similar examples, as shown in Figs. 1 and 3.
Local Prototypes vs ProtoPNet/ProtoTree: ProtoPNet consistently ex-
hibited lower performances when compared with all the other methods, as al-
ready reported in previous works. ProtoTree achieves better results than Pro-
toPNet, being the best approach for ResNet50 and EfficientNetB3. However,
this method is very sensitive to the architecture, showing highly variable per-
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No Prunning Prunning
MODEL GLOBAL LOCAL JOINT GLOBAL LOCAL JOINT
VGG16 60.9 61.3 62.9 60.3 61.0 62.6

ResNet18 63.2 61.5 64.8 61.7 59.9 63.8
ResNet50 67.6 65.9 66.2 66.1 64.6 65.6

EfficientNetB3 71.2 68.7 73.1 69.7 66.8 72.4
DenseNet169 74.3 72.1 75.0 73.5 71.2 74.6

Table 2. BAcc results without and with pruning prototypes in the final classifier.

formances. The proposed local prototypes significantly outperform ProtoPNet,
demonstrating the benefits of our training process. In particular, we achieve a
better BAcc, since our approach handles class imbalance better than ProtoPNet.
When compared with ProtoTree, our local prototypes seem to achieve more sta-
ble performances across backbones, being better in three of the five backbones.
Moreover, it is interesting to observe that ProtoTree often shows a bigger gap
between Acc and BAcc than our approach, suggesting that our model is also
more robust to severe class imbalances than ProtoTree. Figs 1 and 3 show some
examples of the local prototypes and their matching regions.
Joint vs Single Models: The proposed framework allows the training of a
single branch (global or local) as well as their integration into a joint model.
When comparing the individual branches, it is clear that the global prototypes
always outperforms the local ones. This is somewhat expect, as by resorting to a
local analysis alone, we might be missing relevant context cues about the lesions.
When the two branches are combined, we observe that this usually improves the
performance, suggesting that both of them contain relevant and complementary
information. The results in Figs1 and 3 were obtained using the joint model.
These visualizations give us a better understanding of the model’s behavior,
including its incorrect decision (last example in Fig. 3).
Prototype pruning: Table 2 shows the results before and after pruning. In-
terestingly, while there is a small decrease in the performance of both branches
and the combined model, the scores obtained are still competitive with other
methods. Overall, these results suggest that there is some redundancy on the
learned prototypes, with an average of 35% of prototypes being pruned.

5 Conclusions

This paper proposed a new approach for skin cancer diagnosis that simultane-
ously provides global and local explanations to support the decision. Our model
integrates two interpretable classifiers based on global and local prototypes. An
experimental evaluation using various CNN backbones demonstrates the poten-
tial of our approach and opens a new direction in the development of XAI in
medical image analysis. In the future we plan to integrate a few annotations
to regularize the training of the local prototypes, as well as incorporate this
model into a user-experiment to assess the clinical value of the prototypes and
incorporate medical knowledge in the system.
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