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Abstract. Federated learning (FL) has recently been applied to skin
lesion analysis, but the challenges of huge communication requirements
and non-independent and identical distributions have not been fully ad-
dressed. The former problem arises from model parameter transfer be-
tween the server and clients, and the latter problem is due to differ-
ences in imaging protocols and operational customs. To reduce commu-
nication costs, dataset distillation methods have been adopted to dis-
till thousands of real images into a few synthetic images (1 image per
class) in each local client, which are then used to train a global model
in the server. However, these methods often overlook the possible inter-
client distribution drifts, limiting the performance of the global model.
In this paper, we propose a generalizable dataset distillation-based feder-
ated learning (GDD-FL) framework to achieve communication-efficient
federated skin lesion classification. Our framework includes the gener-
alization dataset distillation (GDD) method, which explicitly models
image features of the dataset into an uncertain Gaussian distribution
and learns to produce synthetic images with features close to this dis-
tribution. The uncertainty in the mean and variance of the distribution
enables the synthetic images to obtain diverse semantics and mitigate
distribution drifts. Based on the GDD method, we further develop a
communication-efficient FL framework that only needs to transmit a few
synthesized images once for training a global model. We evaluate our ap-
proach on a large skin lesion classification dataset and compare it with
existing dataset distillation methods and several powerful baselines. Our
results show that our model consistently outperforms them, particularly
in comparison to the classical FL method. All resources can be found at
https://github.com/jcwang123/GDD-FL.

Keywords: Skin lesion classification · Dataset Distillation · Domain
Generalization · Federated learning
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1 Introduction

Federated learning is an innovative approach to training deep learning models
that allows for collaboration and sharing of knowledge without the need to cen-
tralize data. It involves transferring model parameters between different clients to
improve model performance. Federated learning is particularly useful in clinical
settings where privacy is of utmost importance, as it allows multiple healthcare
providers to train models using their own data while keeping patient informa-
tion secure. Recent studies have shown the potential of federated learning in
predicting clinical outcomes [19, 2, 1, 8, 10].

However, federated learning methods require transmitting model parameters
between the server and clients at each learning round [15], and the entire learning
process typically involves hundreds of epochs. The resultant increase in commu-
nication costs has become one of the most significant challenges in federated
learning. Moreover, some hospitals with strict privacy regulations do not permit
internet access, rendering the communication-reliant federated learning methods
infeasible. To address these challenges, previous studies have attempted to limit
the number of communications to accelerate convergence and improve commu-
nication efficiency [4, 6, 14, 17, 21, 29]. However, such methods still require tens
of communications, and parameter transmission remains time-consuming and
laborious in the era of large models. Synthesis-based methods are proposed to
transfer the local images into synthetic images using GANs [18] and centralize
them into the server for task learning, but GANs are hard to train and the gener-
ated synthetic images cost a lot of transmission loads. Recently, data distillation
has been introduced in the federated learning domain [24]. This technique distills
local datasets into a few synthetic images, typically fewer than ten, and sends
these synthetic data to a global server for global training. As the transmission
requires only one round of communication, and the synthetic data contains no
original information, this method inherits the advantages of low communication
costs and excellent privacy protection.

Nevertheless, the previous studies mainly discuss the usefulness of small
datasets, i.e., handwritten digits. Whether the distilled image retains the abun-
dant semantics for lesion classification is unknown and needed to be investigated.
More importantly, this method adopts the oldest distillation algorithm and has
not taken into account the distribution drifts among different clients. The drifts
will lead to differing distributions of each synthetic dataset, and consequently, the
global model trained on such distributed data may exhibit limited performance,
which can impact the accuracy and robustness of the model in real-world set-
tings. Solving distribution drifts is a significant challenge in the federated learn-
ing community and has been widely studied [3, 12, 13, 26, 25, 16]. However, these
strategies are primarily designed for parameter-communication methods, where
the clients send their local model updates to the central server for aggregation.
In contrast, data distillation aims to minimize the amount of communication by
sending synthetic data instead of parameter updates. Therefore, these strategies
may not be directly applicable to the data distillation approach.
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In this paper, we propose a novel and generalizable data distillation-based
federated learning (GDD-FL) framework to address the challenges of communi-
cation costs and distribution drifts in skin lesion classification. We first propose
a generalizable data distillation (GDD) method that distills each client’s local
dataset into a small number of synthetic images and makes synthetic data from
different sites located in similar distributions. It is achieved by approximating
the possible Gaussian distribution of mean and variance values in one client’s
synthetic data and randomly sampling a new distribution to produce synthetic
images. Unlike current data distillation methods that align synthetic images to
a fixed distribution, our GDD method produces synthetic images with uncertain
distribution so they obtain better diversity. Based on the GDD method, we fur-
ther build a communication-efficient federated learning framework for skin lesion
classification. In this process, each client applies the GDD method to distill its
local dataset into a small synthetic dataset and sends it to the global server.
The global server then trains a brand-new model using the gathered data. By
minimizing the communication between clients and the server, our method re-
duces communication costs and improves privacy protection. We evaluate the
performance of our method on the ISIC-2020 dataset in IID and Non-IID fed-
erated settings and compare it with the classical federated learning method and
other data distillation methods. The experimental results demonstrate that our
GDD-FL framework consistently outperforms other methods in terms of clas-
sification accuracy while reducing communication costs and protecting privacy.
Our proposed framework has great potential for applications in real-world sce-
narios where large datasets are distributed across different clients with limited
communication resources.

2 Method

In summary, we introduce the approximation of the uncertain distribution of a
real dataset in Sec. 2.1, how to optimize learnable synthetic images in Sec. 2.2.
and the communication-efficient federated learning framework in Sec. 2.3.

2.1 Generalizable Dataset Distillation

The goal of dataset distillation is to condense the large-scale training set T =
{(x1, y1), ..., (x|T |, y|T |)} with |T | image and label pairs into a small synthetic
set S = {(s1, y1), ..., (s|S|, y|S|) with |S| synthetic image and label pairs so that
models trained on each T and S obtain comparable performance on unseen test-
ing data: Ex∼PDL(ΦθT (x), y) ≃ Ex∼PDL(ΦθS (x), y), where PD is the real data
distribution, L is the loss function (i.e. cross-entropy loss). Φ is a task-specific
deep neural network, i.e. ResNet-18, parameterized by θ, and ΦθT and ΦθS are
the networks that are trained on T and S respectively. Similar to techniques [28,
23], our goal is to synthesize data that approximates the distribution of the real
training data, instead of selecting a representative subset of training samples as
in [27, 32]. The process has been visualized in Fig. 1.

To obtain a small dataset with similar semantics to the real dataset, we ap-
proximate the possible Gaussian distribution of real data and align the learnable
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Fig. 1. Overall framework of the generalizable data distillation-based federated learn-
ing (GDD-FL). Unlike existing data distillation methods, GDD considers the possible
distribution drifts inter-clients and proposes to change the target distribution with
random deviations (

∑
) so that the synthetic images’ distribution can align the distri-

butions of other clients.

synthetic data to the distribution. Typical data distillation methods adopt cer-
tain mean and variance values to determine the distribution. Instead, to simulate
the possible client drift, we estimate the uncertainty of data distribution, and
randomly sample new distributions. Specifically, the uncertainty of mean and
variance values is estimated as:

Σ2
µ(x) =

1

|x|
∑|x|

i=1(µ(xi)− E[µ(x)])2,Σ2
σ(x) =

1
|x|

∑|x|
i=1(σ(xi)− E[σ(x)])2, (1)

where Σµ(x) and Σσ(x) represent the uncertainty estimation of the feature mean
µ and feature standard deviation σ, respectively.

After the estimation of possible client shifts, we randomly sample new feature
statistics from the estimated distribution as µ̂(x) ∼ N (µ,Σ2

µ) and standard
deviation σ̂(x) ∼ N (σ,Σ2

σ) for the corresponding distribution:

µ̂(x) = µ(x) + ϵµΣµ(x) and σ̂(x) = σ(x) + ϵσΣσ, (2)

where ϵµ, ϵσ ∼ N (0, I). In the end, the feature after the simulated client shift is
formed as: x̂ = µ̂(x)× x−µ(x)

σ(x) + σ̂(x). After the distribution change, we optimize
the learnable synthetic images to obtain the same distribution with x̂, where the
details are introduced next.

2.2 Distillation Process

The training details are presented in Algorithm 1. During each learning epoch,
we randomly sample initial parameters ϑ for a typical ConvNet [5], denoted
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as Ψϑ, feeding the synthetic images and distribution-changed real data into the
network to align the distribution. Before alignment, the read data is modified
through the uncertain distribution change and Siamese augmentations. Specifi-
cally, the equations in Sec. 2.1 are used to approximate the uncertain distribu-
tions. We use Up to denote the distribution change, where p = 0.5 is a controlling
variable that represents the probability of performing the change to avoid intro-
ducing excessive noise. The differentiable Siamese augmentation [9] is denoted as
A(·), processing the real data and synthetic data respectively for better semantic
alignment [30]. Finally, the optimization problem with uncertainty estimation is
solved as: minS Eϑ∼Pϑ

ω∼Ω
∥ 1
|T |

∑|T |
i=1 ψϑ(A(Up(xi)))− 1

|S|
∑|S|

j=1 ψϑA(sj)∥2.

2.3 Communication-Efficient Federated Learning
Consider a federated learning task with m clients, the client k-th owns local
dataset Tk. We can obtain a set of synthetic datasets through our proposed
GDD: S̃ = {S̃k|k = 1, 2, ...,m}. The server then collects all synthetic datasets
from the local sites and uses the merged data S̃ to train a brand-new model from
scratch. We consider a non-convex neural network objective in the server and
train a machine learning model on S̃. For each iteration, we sample a mini-batch
from the synthetic dataset, denoted as (x, y) ∈ S̃, and calculate the objective
function L(x, y;w), where L represents the typical entropy loss. Note that the
sampled mini-batch may contain synthetic images from multiple clients, which
enhances feature diversity in each mini-batch. After optimizing for a total of E
epochs, the parameter w̃ is well-trained.

3 Experiment

3.1 Datasets and Evaluation Metrics

Datasets: For our experiments, we used the public skin lesion classification
ISIC2020 [20] dataset provided by the International Skin Imaging Collaboration
archive. The dataset contains a total of 33,126 samples in the public training
set. Since the public test set is not available, we divided the training set into the
train, validation, and test sets with 26,500, 3,312, and 3,314 samples.
Client Split: To simulate the federation, we used two types of splits, IID and
Non-IID, as the prior work [11]. For IID federation, we randomly divided the
train and validation sets into ten parts (m = 10) with equal numbers of positive
and negative samples. For Non-IID federation, we used Dirichlet with α = 1 to
distribute local data. We evaluated the global model using the test set.
Evaluation Metrics: We used four widely adopted metrics, namely, Precision
(P), Recall (R), F1 score, and AUC, to comprehensively evaluate the classifica-
tion performance. Higher values indicate better classification performance.

3.2 Implementation Details

We use ResNet-18 [7] as the base classification model and a classical ConvNet [5]
as the image feature extractor for data distillation training. To improve memory
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Algorithm 1 Process of Generalizable Data Distillation
Input: Training set T
Output: Synthetic samples S for C classes

function ClientDatasetDistillation(T )
2: Initialize S by sampling from random noise

for each iteration do
4: Sample ϑ ∼ Pϑ

Sample mini-batch BT
c ∼ T , BS

c ∼ S and augmentation Ac for every class c
6: Compute OT

c = 1
|BT

c |
∑

(x,y)∈BT
c
Ψϑ(Ac(x)) for every class c

Compute OS
c = 1

|BS
c |

∑
(s,y)∈BS

c
Ψϑ(Ac(s)) for every class c

8: Compute OU
c = 1

|BT
c |

∑
(x,y)∈BT

c
Ψϑ(Ac(Up(x)))) for every class c

Compute LS,T =
∑C−1

c=0 ∥O
T
c −OS

c ∥2

10: Compute LU =
∑C−1

c=0 ∥O
U
c −OS

c ∥2
Update S ← S − η∇S(LU + LS,T )

12: end for
return S for C classes

14: end function

usage and computational efficiency, all images are resized to (224×224). During
the distillation training, we use the SGD optimizer [22] with an initial learning
rate of 1 for 300 epochs and set the batch size to 64. For training the classification
model, we use the SGD optimizer with an initial learning rate of 0.01. The model
is trained for 50 epochs using a batch size of 64.

3.3 Comparison of State-of-the-Arts

We mainly compare our method with the latest data distillation methods, namely
DC [32], DSA [30], and DM [31]. Since these techniques have not been used in
federated learning, we re-implement them in our settings. In addition, we com-
pare the performance of the classical federated learning framework, FedAVG [15].
Furthermore, we demonstrate several centralized training results, where the "Up-
per Bound" refers to centralizing all data to train a classification model, and
"R.S.@10" and "R.S.@100" denote randomly selecting 10/100 images per lesion
class. Since the distillation method used in the prior work [24] is too old without
novel designs, we focus on the latest distillation methods.

The quantitative results are shown in Tab. 1. It is seen that GDD outper-
forms other distillation techniques consistently across all settings. Notably, the
improvement is more significant when distilling the dataset into 10 images per
class, as the diversity of synthetic images is progressively enhanced. Compared
with FedAVG, the results in the IID setting show that data distillation-based
methods still have room for improvement. However, data distillation-based meth-
ods have a significant advantage over FedAVG in terms of low communication
costs. Moreover, GDD-FL shows a substantial improvement in the Non-IID set-
ting for AUC scores, i.e., 5.88% and 6.37% for distilling 1/10 images per class.
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Table 1. Comparison with latest data distillation methods on the ISIC-2020 dataset.
"*" denotes the implementation on our federated setting.

Method AUC P R F1

Upper Bound 80.97 ± 2.12 97.23 ± 0.03 91.11 ± 2.36 94.07 ± 1.54
R.S.@10 56.86 ± 1.16 87.29 ± 0.19 59.63 ± 5.08 70.86 ± 3.99
R.S.@100 60.22 ± 2.70 87.67 ± 0.08 65.56 ± 3.53 75.02 ± 2.54

Transmit parameters: 12640 MB
FedAVG (IID) [15] 75.33 ± 3.21 96.55 ± 0.34 80.12 ± 4.97 87.57 ± 3.13
FedAVG (Non-IID) 65.97 ± 4.17 83.22 ± 1.34 70.68 ± 6.26 76.44 ± 4.23

Transmit 1 image per class: 2.88 MB

II
D

DC∗ [32] 66.72 ± 2.98 96.71 ± 0.09 75.26 ± 5.23 84.56 ± 3.25
DSA∗ [30] 64.43 ± 2.67 96.76 ± 0.09 74.35 ± 5.78 83.99 ± 3.56
DM∗ [31] 68.82 ± 0.22 96.76 ± 0.09 74.35 ± 5.77 83.99 ± 3.56

GDD-FL (Ours) 71.76 ± 0.04 96.93 ± 0.11 78.55 ± 2.74 86.78 ± 0.04

N
on

-I
ID

DC∗ [32] 65.18 ± 8.09 96.73 ± 0.04 72.50 ± 12.22 82.42 ± 8.58
DSA∗ [30] 68.79 ± 0.88 96.70 ± 0.04 78.66 ± 2.93 86.73 ± 1.77
DM∗ [31] 68.41 ± 0.17 96.60 ± 0.12 72.88 ± 0.56 83.08 ± 0.32

GDD-FL (Ours) 71.85 ± 1.75 97.17 ± 0.55 81.14 ± 3.28 88.41 ± 2.01

Transmit 10 images per class: 28.81 MB

II
D

DC∗ [32] 66.79 ± 1.41 96.47 ± 0.03 78.21 ± 4.37 86.39 ± 2.35
DSA∗ [30] 65.15 ± 3.03 96.69 ± 0.06 76.38 ± 4.67 85.34 ± 2.13
DM∗ [31] 69.29 ± 2.35 96.58 ± 0.79 78.21 ± 5.73 86.43 ± 2.24

GDD-FL (Ours) 73.38 ± 1.50 96.79 ± 0.28 79.80 ± 10.68 87.48 ± 7.09

N
on

-I
ID

DC∗ [32] 65.70 ± 2.47 96.83 ± 0.03 76.42 ± 4.13 85.42 ± 2.48
DSA∗ [30] 69.99 ± 0.32 96.80 ± 0.02 79.40 ± 1.89 87.24 ± 3.75
DM∗ [31] 69.07 ± 7.25 96.85 ± 0.73 76.75 ± 4.51 85.64 ± 3.28

GDD-FL (Ours) 73.34 ± 1.28 96.86 ± 0.34 81.37 ± 7.34 87.72 ± 10.73

We also present the visualizations of our synthetic data in Fig. 2, where the
first row shows negative samples and the second row shows positive samples.
Each column represents the synthetic images distilled by a different client. We
observed that the synthetic images underwent style changes based on the original
dermoscopy images and contain more texture and style information useful for
training a classification model. However, these semantics make the appearance
abnormal from the human view, and therefore, it is hard to tell what these
images exactly represent.

3.4 Detailed Analysis

Ablation Analysis: We also conduct an ablation study to evaluate the impact
of our proposed distribution change. Results are shown in Tab. 1, where we
compare the performance of GDD-FL to that of the baseline data distillation
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Fig. 2. Visualization of our synthetic images, including the positive and negative sam-
ples from ten distributed clients.

method, DM, and to the results of training a model with a randomly sampled
subset of 10 or 100 images per class ("R.S.@10" and "R.S.@100"). The DM
method is trained without distribution change. As seen from the table, when
trained with the same number of samples, GDD-FL achieves significantly better
AUC scores, with an improvement of nearly 6% over random sampling. Moreover,
the comparison between DM and GDD-FL further confirms the effectiveness of
our proposed distribution change. While the performance of DM drops slightly in
the Non-IID setting, GDD-FL demonstrates stable performance across both IID
and Non-IID settings. Notably, the significant improvement brought by GDD-FL
suggests that the distribution change not only enhances generalization but also
leads to more diverse semantics, thereby improving classification learning.
Computation Analysis: We further count the computational costs to make a
comparison between GDD-FL and the traditional FedAVG. FedAVG trains the
model in parallel for 1 hour, requiring 16848 MB GPU. Our method involves
distillation training at local sites (1.2 hours, 9561 MB GPU) and classification
training at the server (0.1 hours, 16848 MB GPU). It indicates that our method
minimizes communication resources while using similar computational resources.
Privacy Protection: GDD-FL condenses numerous real images into a smaller
set of synthetic images. By treating the synthetic images as learnable variables
and inputting them along with real images into a fixed network, we minimize
the discrepancy between their feature outputs. This training aligns the synthetic
images with the overall distribution of the real dataset, rather than specific
individual images. We also apply random perturbations to the real distribution,
reducing privacy risks. Consequently, the synthetic data doesn’t contain precise
personal information and is not part of the original dataset.

4 Conclusion

In this paper, we introduce a communication-efficient federated skin lesions clas-
sification framework using generalizable data distillation, named GDD-FL. Un-
like current data distillation methods that align synthetic images to a fixed
distribution, our GDD simulates the possible inter-client distribution drifts and
produces synthetic images with better diversity and distribution alignment. The
experimental results on the ISIC-2020 dataset demonstrate that our GDD-FL
framework consistently outperforms other methods in terms of classification ac-
curacy while reducing communication costs and protecting privacy.
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